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0.1 Introduction

Language is an extremely complex phenomenon and evolutionary accouraeeof it
therefore often considered problematic. Previous work by the authbelas
concerned with finding mechanisms that could simplify the way bylwlarguage
has evolved. One such factor is self-organisation in a populatiexpésed ire.g.

de Boer (2000, 2001b). However, in this paper another mechanism is explwed,
that is based on bootstrapping. It is investigated whether speghbhbmieasier to
learn if infants are first confronted with an easier-to-leamsion, called infant
directed speech. For work on self-organisation, readers areeteferOudeyer’s
chapter in this volume.

Infant-directed speech is the special way of speaking thatdswisen
caretakers address infants. One can think of several reasoriisvhiyould be the
case, and this paper investigates one of them: it could be that-@hifected speech
facilitates learning and transfer of language across generations

The learning of unbounded, productive communication systems (such as
human language) turns out to be an extremely hard problem. It can k@ prov
mathematically that even relatively simple examples of progeicthmmunication
systems cannot be learned with complete accuracy. Gold (1967) hastbladwhis is
the case for context-free grammars. Although, of course, the ofaontext-free
languages cannot be equated with human languages, linguists agtearthiag
human language is at least as hard a problem.

Compounding the problem of learning human language is the fact thadimost
the linguistic utterances humans produce consist of rapid, casuehspeehich
articulation is reduced and words are concatenated. Also, a ktgidge only
makes sense if the context is known. Finally, many words, expressidns
grammatical constructions occur extremely infrequently. THisasvn as the poverty
of the stimulus€.g.Chomsky 1968, but see also Pullum 1996). How children manage
to learn their native language is still very much an open question.

Different theories exist as to how children tackle the taskawhieg language.
Most of these theories agree that children have a bias tovearthéng human
languages. Note that the term bias is used here in its breaesst Bias as | use it
only means that some things are learned more easily than Mh#rs linguistics
there is a strong debate about the form of this learning bias.X@reene position
postulates that there is a very detailed, language spe@#fidehg. principles and
parameters, for an overview see Baker 2002), while another exp@shdates there
is hardly any bias at all, only that which is caused by geeearal) learning
mechanismsg(.g. EImanet al 1996). The study of the evolution of language in turn
investigates how these learning biases have evolved.

In order to understand what makes children so good at learning language, i
necessary to know exactly what input they receive, and what ingup&yemost
attention to. If input to children is considerably different fromrtq@d, casual speech
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that adults usually hear, children’s learning biases might be djtfiteent from what
otherwise would be expected. In fact, it turns out that infant-eidespeech is
significantly different from adult-to-adult speech in a number sipeets. The
properties that make infant-directed speech special will beett@@amore detail in the
next section. A possible explanation for the special charactergdtiofant-directed
speech is that they make speech easier to learn. Nest@ir{1977) have argued
that infant-directed language (they speak about motherese) is nesayeadapted
to be a special “teaching language”. They show that only some aitritoutes make it
easier to learn. However they have not looked at phonetic and phono(agimastic)
properties of infant-directed language. Here we will focus oadtsistic properties,
and try to show objectively whether they cause infant-directectkpgede easier to
learn.

If infant-directed speech is really easier to learn, thisrhatications for
children’s innate biases for learning language. The innate sitificof language
can then be less restrictive. Rapid learning could probably bevadhigrough a
bootstrapping procedure, such that simple constructions are learnaadirtsien used
to interpret and learn more complicated constructions. The infdrdtifiheed to
have a number of learning biases, but these can be simpler. duilc vave
implications for how specializations for language have evolved.edexyin our
present state of knowledge, we do not know whether infant-directechsigeeally
more learnable than adult-directed speech.

Testing learnability of infant-directed speech in an experimentahgés
problematic. One cannot do an experiment in which one group of infan{srigedk
of infant-directed speech (but not of ordinary adult-directed speecl® thkicontrol
group is exposed to both. A different experiment where one group of ihkeets
infant-directed speech in a second language, while the other grospohgaadult-
directed speech in the same second language, is possible. Hawsvexiremely
difficult to ensure that the only differences are due to the diifee between the two
kinds of speech, and not, for example to the difference in kind of ititevaor to the
content of the speech. How then is it possible to test differeméearnability? This
paper proposes that it can be tested with a computer model.

Unfortunately, computer models that can learn the semantic ocsgnta
content of real language are still very much in their infaboy $ee=.g.Roy 2000;
Steels and Kaplan 2000) so it is not possible to test the differeiearnability for
these aspects of language. However, computer models that haredib spands are
much more advanced. The focus of this paper is therefore on thebiégriod vowel
sounds. The work is based on recordings of infant-directed and adult-dlispetech
that were acquired at the University of Washington in Seattisté@on 1993; Kuhl
et al 1997). The computer model and the data set that were used arsatiscus
section 3.

There is another reason, connected to the learnability issuenfainy-i
directed speech holds interest for research into the evolution afdgegin adult-to-
adult speech, articulation tends to be strongly reduced. This isi@gpaoticeable in
vowel sounds. If children base the vowel systems that theyd@aiily on the
signals that they perceive most frequently, the vowel systearianguage would be
reduced in every generation until it collapses. There are two Wwags to counter
this: either children can have a mechanism that automaticatipensates for the
expected reduction of a vowel system, or they can focus on spe&threethat are
more clearly articulated, for example infant-directed speeghimthis is difficult to
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investigate with real children, but relatively straightforsvéo do with a computer
model. Such a model and some preliminary results are presentdionst.

This paper is intended for an interdisciplinary audience, but | toavel it
necessary to include some technical detail of the computer siomglatsed here.
Readers who are interested in the main results and not in this déthe methods
used, might wish to skip or only read the first paragraphs oosscs.3 and 4.3.

0.2 Infant-Dir ected Speech

When talking about infant-directed speech, one must be careful not teseantvith
the meaningless vocalizing towards very young infants that istsoes referred to
as ‘baby talk’. This vocalizing is probably meant to draw thenirdaattention and to
soothe it, but it is unclear whether it plays any role in the aitigui®f language.
Infant-directed speech, on the other hand, consists of meaningfuho#sdirected
to the infant during, for example, play, explanation, or when the infzads to be
disciplined. Such utterances occur already before the infant ceomeddy be
supposed to understand what is said.

Infant-directed speech tends to be slower, simpler, more ckedidylated,
and has higher and wider intonation contours than adult-directed spegdfe(nald
and Kuhl 1987; Fernaldt al. 1989). Infants tend to prefer infant-directed speech over
adult-directed speech (Fernald 1985; Fernald and Kuhl 1987).

One of the most noticeable differences between adult-directed amd-inf
directed speech is the intonation. This is immediately obvious,itwag listens to
infant-directed speech in a language one doesn’t know. The overhlbpittfant-
directed utterances is higher, and the pitch range is expanded. Alttheugxtent to
which pitch is expanded is culturally determined, expansion itselbéws observed
in many different languages and cultures, even in languages wherean
distinguish meaning, i.e. tone languages (Grieser and Kuhl 198&)t-difected
speech also has a slower tempo than adult-directed speech. Bgpleeigyllable
nuclei are considerably stretched.

The exaggerated intonation and slower tempo make infant-directedspeec
easier to understand, and probably also to learn. Whereas the higheropikd be
explained as an unconscious attempt of the caretakers to imitanéathte the other
properties of infant-directed speech do serve a useful purpose. lotohalps the
infant to separate sentences, words within sentences and syliéhieswords.
Slower tempo also makes it easier to divide speech into senterrds, and
syllables. All these are prerequisites for learning speeclaagdage. However, these
are not the only useful phonetic and phonological properties of infantedirepeech.

It turns out that at least the vowels of infant-directed specmare carefully
articulated than those in adult-directed speech. Kuhl (1997) have performed
experiments in which the speech of mothers talking to other adutsamapared
with speech of the same mothers talking to their infants. Thesearagpés have been
done for Russian, English and Swedish. Acoustic measures werefrtadesowel
parts of target words (containing [i], [a] and [u]) in order tineste the accuracy of
articulation. This was done by measuring the area of the triangloustic space that
had the three target vowels as its corners. It turned out lthetugh there was
considerable individual variation, articulation was significanilyre precise for
infant-directed speech than for adult-directed speech. Infant-dirspeech therefore
contains better information about the exact articulation of vowels.

It is perhaps not surprising that infants prefer to listen to irdaatted speech
rather than to adult-directed speech (Fernald 1985; Fernald and Kuhl 1887). T
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effect is probably amplified when the infant-directed speech is pedddaring a
face-to-face-interaction with the infant. Infants pay much mtiesm#on to speech in
face-to-face interactions than to speech produced around them. Duiting suc
interactions caretakers almost invariably modify their speettiout necessarily
being aware of doing so. The stronger attention infants pay to idif@cted speech,
together with its frequent occurrence in face-to-face intenastiprobably means that
it influences language learning more than would be expected froral#tiee
frequency with which infants hear this type of speech.

All these factors indicate that infant-directed speech fatzkt language
learning. Further support comes from the fact that special idfeettted speech
registers occur almost universally cross-culturally (Fergd864; Fernalckt al
1989; Lieven 1994). There are some reports of cultures in which isfiantsot
addressed directly by adults.g. Schieffelin and Ochs 1983; Schieffelin 1985),
although in these cultures older children generally do address infest#ydiSuch
exceptions seem to indicate that infant-directed speech is not insidpe for
learning language. However, it appears that special infardteldespeech registers
are the norm rather than the exception cross-culturally.

There seem to be important indications that infant-directed spaeitbates
learning of language and speech. Infants automatically prefer-ufaicted speech
and caretakers automatically produce infant-directed speech. Thetip®péinfant-
directed speech (tempo, intonation) probably make it easier to pérases (see.g.
the papers in Morgan and Demuth, 1996 part 1V), worlg, florgan and Demuth
1996, part Il, 1ll) and syllables. Also, vowels are articudateore carefully. If infant-
directed speech really facilitates learning, then it probabénievolutionary
adaptation for transferring language from generation to generhbltovever, testing
the learnability of infant-directed speech or the way in whiéhcititates preserving
language across the generations is quite impossible using reai Bubjacts.
Therefore these properties are investigated with computer modals paper.

0.3 Investigating the L ear nability of ID Speech

The model used for investigating the learnability of infant-de@cpeech is based on
applying a statistical machine learning method to two dataletse consist of words
taken from adult-directed and infant-directed speech, respectivesywork was first
presented in de Boer (2001a) and has been described in more detaBae(dend
Kuhl, 2003). Here we will give a brief description of the compatsti model, the
data set and the results.

0.3.1 The data set

The aim of the research was to compare the learnability oftidieected speech and
adult-directed speech. For this, recordings of both types of speeemeaeded. The
recordings used here are the same as those used irnetkaih1997) and were first
described by Gustafson (1993). They consist of digitized recordings @merican
mothers, both talking to another adult and talking to their infantsirifaets ranged
in age from two to five months. The topics of conversation in botsocasre
everyday objects likely to be familiar to the infants. The workkd in the work
presented here were “sock”, “sheep” and “shoe”. These words eleres] to have
the vowels [a], [i] and [u] occur in roughly similar phonetic corgekt the adult-to-
adult conversation, the experimenter elicited these words, whilesiinfant-directed
session the mothers used toys representing the objects while platfirtheir
infants.
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Figure 1: Example of a smoothed spectrum showing formant peaksfor the vowel [a] for a
male speaker. The power scaleisrelative and has been omitted. The frequencies of the first
four formant peaksareindicated.

The recordings were made on audiocassettes and digitized at e bitgion
and a sampling rate of 16 KHz. After this, the target word® wentified and
isolated from the recordings. These were then used as input igribkmocessing
and learning modules of the computer model.

Table 0.1: Number of tokensin dataset (and formant pairs) per target word, register and mother.

Adult- Directed Infant-Directed
mother | sheep sock shoe sheep sock shoe
AG | 4 (9412) |2 (9304) | 5(20539) | 6(30716) 4(22593) | 3 (18 866)
AH | 6(14029) | 5(15643) | 9(37117) | 6(24967) 9(35723) | 7(22543)
AL | 8(18806) | 3 (6921) | 9(32997) | 9(38126) (40196) | 8(27384)
AO | 4 (7941) | 3(12414) | 3 (6441) | 9(27756) (19736) | 3(25905)
AP | 8(29513) | 6(22767 4(10110) | 7(30869) (41 406) | 6(40018)
AS | 7(19916) | 8(28359 7(21633) | 7(31137) (21 619) | 6(35546)
) ( )
) ( )
) ( )
) ( )

)

)
AT |3 (9420) |3(10477) |3 (8499) | 5(12121 54130) | 4(27386
AW |'8(16443) [ 4(12109) | 4(10754) | 8 (33268 35561) |5 (27124
)
)

AX [ 4(15838) [ 7(34152) | 7(20083) | 8 (41969 59949) |5 (17 057
AZ4{A1965) |6 (22971) |9 (30450) | 4 (16890

7
6
9
7
7
6
7
7

35663) |6 (347239

0.3.2 Signal processing

Formants are the resonant frequencies of the vocal tract and obedyeed as peaks
in the frequency spectrum of a speech sound. This is illustrategline fL for the
vowel [a]. The resonant frequencies are determined by theasidesnpedances of
the different oral cavities formed when the tongue and lips arn@ jpaisition to
articulate. The shape of the vocal tract as it occurs in alatlosowel articulations
can be reconstructed from the first three formants, while itstetfvo formants suffice
to represent the accuracy of articulation of the vowels [lednfd [u]. Hence only the
first two formants were used.

The words in the input to the computer model were monosyllabic and had
voiceless consonants only. Therefore the target vowels could bdigiehy the fact
that they were voiced. After detecting the voiced part of alwawoustic properties of
the vowel that represent the accuracy of articulation weracgtt. The first two
formant frequencies (also used by Kehll 1997) were calculated throughout the
length of the voiced part of the words, resulting in hundreds of forpaars per
word. Details of the signal-processing algorithms can be found Bodeand Kuhl
(2003).

The vowels of the target words were of different lengths, the [sock”
being much shorter than the [u] in “shoe”. Also the number of exampiegqoe
differed for each mother and register (see table 1). As #éneifg algorithm might be
biased towards the most frequently occurring vowel in the sangewnas taken that
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each target vowel was represented by an equal number of formantHuatithis
reason, the large number of formant pairs was sub-sampled sutdr gath mother,
for each speech style there were 1000 formant pairs per vowelk lftereach mother
and speech style, there were 3000 data points in total.

0.3.3 The learning algorithm

In this experiment, an automatic learning algorithm tries tothedcenters of the
vowel categories that are present in the input data. It cassbenad that the centers
of vowel categories correspond to the places where the concentfatiata points is
highest. Given that vowels are never articulated perfabilyyowel categories will
cover a part of the available acoustic space. The learningthig therefore needs to
get an idea of which parts of the space belong to which categeny.wé assume that
data points for each vowel are normally distributed over the acapsce and we
will also assume there are three vowels. The means of thehdistributions are
assumed to correspond to the centers of the vowel categoriesthveiileovariances
are assumed to represent the way the vowel categories aeael gjyer the acoustic
space. In mathematical terms, the data points will be asstnfielbw a distribution
that consists of mixture of three Gaussian distributiorighe learning task consists of
finding the means and covariances that best cover the datasetliliég of the
means are then considered the positions of the learned vowels.

The learning algorithm used here is based on the expectation maomizia
a mixture of Gaussian distributions (Dempsteal. 1977; Bilmes 1998). This is a
standard technique from statistical machine learning. It firggseaified number of
Gaussian distributions (or Gaussians for short) that fit best mea dataset. The
number of Gaussians used has to be fixed beforehand. This is unréadiséiavants
to model learning by children, as they cannot be expected to know befoteband
number of vowels in the language they are learning. Howeveajrthef the research
presented here was ¢comparethe learnability of infant-directed speech and adult-
directed speech. As the same learning procedure is used in batharebéhe same
prior knowledge is assumed, the comparison remains fair. In the nioel@lumber of
Gaussians was fixed to three, one for each vowel in the data set.

Samples drawn from a Gaussian distribution follow the well-known bell
curve. In a mixture of Gaussians, there are multiple Gaussaibdtions, each with
its own mean and standard deviation, and each occurring with a sgguibbability.
If one draws a sample from a mixture of Gaussians, one fiesits@ne of the

0.6

0.5
0.4
0.3 A
0.2 -
0.1 -

0

Figure 2: Example of a mixture of three Gaussians. The thin grey linesindicate the individual
Gaussians, the bold lineindicatesthetotal distribution (approximating a triangular
distribution). Note that the surface of the total distribution sumsto one, astheindividual
Gaussians are scaled with their respective probabilities.
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individual Gaussian distributions using their given probabilities, hed takes a
point from this distribution. The total distribution of the mixturehis weighted sum
of the individual Gaussians. This is illustrated in figure 2 lier @dne-dimensional
case. Gaussian mixtures work equally well in more dimensionen@rough
Gaussians, any distribution can be approximated.

The expectation maximization algorithm starts by initializingrtieture of
three two-dimensional Gaussians to a starting value. In the expes presented
here, the means of the Gaussians were set approximately twabeorners of the
acoustic space that is used for ordinary vowel articulationg@pdeft frame of
figure 3). The corners were determined by making measurememntstotypical /i/,
/al and /u/ produced by a female speaker. The covariances wareiseles with a
radius of 30 Hz (unrealistically small for a vowel). The probitd of the three
Gaussians in the mixture were set to 1/3. These values wergdragively re-
estimated in order to maximize the likelihood that the given datassetaken from
the Gaussian mixture. Details of the re-estimation can be fouBithies (1998).
Ideally, the Gaussian mixture converges to a situation wersathples from each
target vowel are covered by one and only one of the Gaussians iixtbheem

The expectation maximization algorithm is guaranteed to convergg,ibut
not guaranteed that it will find the optimal solution. There aceways in which the
outcome can be less than optimal. Firstly, if the vowels in#taset have too much
overlap, the algorithm will converge to a solution where two Gans®verlap. This
might be the optimal solution, but the algorithm still hasn’t lecithe correct
positions of the vowels. Secondly, if the structure of the daiassd confusing, it is
likely that at least one of the Gaussians “gets stuck” on agnifisant peak. The
algorithm might then find three different vowels, but the positiorthede vowels do
not correspond to that of the original vowels in the dataset.

The possibility that the learning process can get stuck makesét
informative than a straightforward statistical analysihefdataset. Such an analysis
tells us whether the structure that is expected to be foumnthfee vowels) is present
at all, but does not tell us how difficult it is to learn thisisture from the dataset.
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Figure 3: Examples of learned positions of Gaussians. The results of two mothers
(AL, top and AO, bottom) are shown for both adult-directed (AD) speech (left
column) and infant-directed (1D) speech (right column). Centers of Gaussians
areindicated asblack squares, datapoints as grey points. Starting positions of
Gaussiansareindicated with crossesin thetop left frame. Approximate positions
of typical target vowels areindicated in thetop right frame.

0.3.4 The results

The learning algorithm was run on the utterances of each of timeotters for both
the infant-directed speech and adult-directed speech datasetst iasrchecked
how well the three Gaussians that made up the mixture correspontatevit
positions of the original vowels [a], [i] and [u]. Learned vowelesys were
considered especially bad if two Gaussians overlapped, or if dhe Gfaussians was
stuck on outlier data points. An example of learned positions of Gau§sian®
mothers and both types of speech is given in figure 3.

For each mother, the learned positions of the Gaussians were cdmpare
between the infant-directed data set and the adult-directed datasmed out that
without exception, the infant-directed data set resulted in bettgiopssor the three
Gaussians. Learning on the basis of the adult-directed datask¢ddn outliers and
overlapping Gaussians, indicating that only two out of three vowsls igarnt.
When both data sets resulted in three peaks, the centers of tlsta@saier the
infant-directed data set were further apart (indicating maefdaarticulation, and
hence better targets for learning). This means that infarttelttespeech is more
learnable than adult-directed speech wit 0.01.
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0.4 Investigating I D Speech and Diachronic Stability

The second computer model investigated the role that infant-dirgoéedh plays in
stabilizing vowel systems as they are transferred from omergeon to the next. If
children learn the prototypical positions of their vowels on the lodsapid casual
adult-to-adult speech, their vowel systems will become redudbdegpect to the
vowel systems of their parents. This would happen because voigalaion is
reduced in this type of speech. Here | investigate two possiblesos that prevent
this collapse from happening. The first scenario posits that infampensate
automatically for the reduction that occurs in adults’ speech. hir @tords, children
learn vowel representations that are further apart from eachtb#rethe vowels that
they actually hear. The second scenario is that children do nasagibelearn on the
basis of the speech that occurs most frequently, but that theyemtiidy learn on
the basis of clear speech. This clearer speech could be ddtectede it tends to
occur in face-to-face interactions with adults, or becausetdgaation is exaggerated
and its tempo is slower.

The model proposed here uses a statistical learning mechansantobwels
generated by an artificial vowel synthesizer. In the modebpailation of agents can
produce and learn vowels. Some of these agents are infants anchothadsilts.
Adults produce speech sounds, and infants learn on the basis of thesa \file,
adults die and infants become the new adults. The idea is to gatedtow vowel
systems change over time. In contrast with the previous expdrintereal data are
used. Using real data would be impossible, as it is necesseoynipare different
vowel systems under controlled conditions.

0.4.1 The population

The computer model is based on a population of adult and infant agertshén a
experiments described here, at any instant there are twentyaadulenty infant
agents. Interactions in the population always occur between one rarskiadted
adult and one randomly selected infant agent. Adults have a repateiowels that
does not change during their life. In an interaction they randomdgtsgivowel from
their repertoire and produce it, while adding noise and reducing tbelaion by a
specified amount. How this happens exactly is explained in the reddrsdnfants
do not yet have a repertoire of vowels, but learn this on the dfais signals they
perceive from the adults they interact with. The learning nreshrais described
briefly in section 4.3

After a fixed number of interactions, which was set to 10 000 in all
simulations described here (giving on average 500 interactiong@at) all adults
were removed from the population and all infants were transformeddhts. The
vowels of the new adults were the ones they had learned on thefthssignals
they had heard during their interactions.

Because of the use of a population of interacting agents, the racsialilar
to language game models proposed by Steels and co-workers (SteeldelBo8y
2000, 2001a) and the iterated learning model proposed by Hurford and &igby (
Kirby 2002).

0.4.2 The production and perception mechanisms

The production mechanism is the same formant synthesizer that echsysevious
work by the author (de Boer 2000, 2001b). This synthesizer produces tlieuirs
formants for any given vowel. The input to the synthesizer cordisie three major
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vowel parameters tongue height, front-back position of the tongue amditiging
(seee.g.Ladefoged and Maddieson 1996, ch. 9 for how different settings of these
parameters are used in the world’s languages). These arsemeeict by real numbers
with values between zero and one. Noise of the articulations iseddoeadding a
random value taken from the normal distribution with zero mean and sfanda
deviation 0.05 to all articulatory parameters. In order to modeicteon of
articulation, all articulatory parameters are attractetieacenter (where all

articulators have value 0.5) using the following formuta: a(x-0.5) + 0., where

X is any articulatory parameter ands a constant smaller than one. This constant is a
parameter that is varied over the different simoie.

Perception is implemented using a distance fundiased on the first formant
and the effective second formant of a vowel. Tlssasce function has been taken
from Schwartzt al (1997). The effective second formant is a noedimweighted
sum of the second, first and fourth formants arehsed on the way humans perceive
vowels. It allows for a convenient two-dimensiorgpbresentation of vowel systems
and for realistic distance calculations betweenalswCalculations are not performed
on formant frequencies in Hertz, but on frequentcieBark, a perceptually realistic,
near-logarithmic scale. Detailed formulas can hentbin Schwartet al (1997).
Whenever a signal, consisting of four formantqesceived by an agent, it is
converted into the more perceptually realistic pdithe first formant and the
effective second formant.

An adult agent only stores the values of the addtouny parameters for each
vowel in its repertoire. Whenever the vowel is monced, first of all noise is added,
then it is reduced, and finally the values of therfformants for this noisy, reduced
articulation are calculated. In an infant agen, fibur formants it perceives are
transformed into a first and effective second fantrzair, and each example it hears
is stored. When an infant agent changes into ah, adstatistical learning mechanism
is used to convert the numerous stored examplesismall number of vowel
categories.

0.4.3 The learning mechanism
The learning mechanism needs to detect how mangigomere present in the data
set and where these vowels are located. It casdar@ed that the centers of the
vowel categories have the highest densities of paitats. In contrast with the
previous experiment, it cannot be assumed thatuh&ber of categories is known.
Therefore a different learning algorithm has bempleyed. This learning algorithm
tries to locate the peaks in the data set usirgrtaia degree of smoothing (otherwise
each data point could be considered a small péakgen tries to determine which
data points belong to which peaks by finding thieya that separate the peaks. It is
therefore calledterative valley seekin@fetails can be found in Fukunaga 1990). On
the basis of the peaks that are found, a new seivweé| articulations is determined.
Like Expectation Maximization, iterative valley &gy makes an initial
estimate of the classification of the data set, iamgtoves this iteratively. Unlike
Expectation Maximization, it does not make assuomstiabout the shape of the
distributions of data points, nor about the nundfeslasses (peaks) in the data set. It
is therefore called an unsupervised learning algari it does not need any inputs
other than the data set. After the algorithm fieshonly a small number of classes
remain. These classes tend to correspond to thes peghe distribution of data
points, while the valleys between the peaks cooedpo the boundaries between the
different classes. Classes with complex shapedeadearned in this way.
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This resulted in a number of sets of data poirdas ¢ach represented a vowel.
The point in each class where the distributionaibdoints was densest (this
corresponds to the highest point of the peak cpomding to this class) was taken to
be representative of the data set. These points taken to be the acoustic
representations of the new vowels of the infanhagghe articulatory values
corresponding to these acoustic representations twen determined and stored.

Finally, a compensation for reduced articulationlddoe performed. This was
done by shifting articulator values away from tleater, using the following formula:

X « B(x-0.5)+ 0.5, wheregis a constant larger than one anid any articulatory

parameter. Note the similarity between this funtémd the reduction function
described above. In this way a new set of artiomyjatalues for the vowels that
corresponded to the observed signals was found.

0.4.4 The experimental setup

The experiments consisted of initializing the asluita population with a given
repertoire of vowels, such that all adults inigatiad the same (either 5 or 7, as
indicated per experiment) vowels. The infants population always started out
empty. | do not want to claim that real human itdasome empty to the task of
learning language, but this was the easiest to madd at the same time the most
“basic” assumption possible. If transfer workedhis case, it would also work in the
case where more knowledge was available beforehand.

After initialization, the interactions started, aaitier each 10 000 interactions,
all adults were removed, all infants became adulith the learned vowel repertoire)
and a new generation of empty infants was addeid. was repeated for 100 or for
250 generations. The vowel systems and the nunibh&aweels per agent were logged
for each generation.

The conditions compared were (1) infant-directegesh, (2) automatic
compensation for reduction, and (3) both. In tHantrdirected condition, there was
very little reduction of vowel articulations, andreespondingly, no automatic
compensation.

0.4.5 Preliminary results
A number of experiments have been done to invastigaw well vowel systems are
preserved under different conditions. Three coodgiwere compared. In the first,
vowel articulations were shrunk 20% € 0.8) and in order to compensate for this,
learned vowel systems were expanded 25% {.25). A reduction of 20% is
considered to be on the low side of realistics llikely that real rapid, casual speech
has even more reduction, given the difference gusiic space used by infant-
directed speech and adult-directed speech (Kuhl. 1997). This condition modeled
learning on the basis of adult-directed speechsaibdequent automatic
compensation. In the second condition, articulatiaere only shrunk 2%.
Articulations were shrunk a little bit, as it isrealistic to expect that infant-directed
speech is articulated completely perfectly. No cengatory expansion was
performed. This condition modeled use of infanedied speech. In the third
condition, articulations were shrunk 2% and expdr2l®5%. This modeled a
combination of infant-directed speech and auton@irapensation.

In the experiments described here, two sizes oeVeystems were used.
These were five vowel systems and seven vowelsgst®nly one type of five-
vowel system was investigated: the one containingg], [a], [0] and [u]. This five-
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Figure 4: Change of vowel systemsover time for different vowel systemsand different

conditions. Note that for the five vowel systems, only 100 gener ations were modelled, while

for the seven vowel systems 250 gener ations wer e modelled.
vowel system is the most frequently occurring vosyedtem in the world’s languages.
Three types of seven-vowel system were investiga&kdontained the vowels [i],

[e], [a], [0] and [u]. The remaining vowels werd and p], [w] and p], or [y] and
[2]. These, too, are all frequently occurring vosystems.

When vowel systems are transferred from generaigeneration, they are
modified. Vowel categories shift place, and categgomay be lost, or new categories
may be added. How vowel systems change over tinllessrated in figure 4. The
frames in this figure show for each generationvibvwel system of one agent from the
population. All vowels of the agent are plottedhe acoustic space of the first and
effective second formant. The starting vowel systeshown with squares, and the
final vowel system is shown with triangles. Thigine for the five-vowel system
and the first seven-vowel system, for the redudgimpansion condition and for the
pure infant-directed speech condition. It can ndew categories shift over time
and how some of the vowel categories disappeaantbe observed that the five-
vowel systems are more stable over time than thenseowel systems, and that
perhaps the five-vowel system is better presemete ID-speech condition.
However, these plots are not well suited for asttadl comparison of how well
vowel systems are preserved over time.

In order to compare multiple runs of the systerwas decided to look at the
number of vowels in the vowel systems in each gaier. Judging from the way



Draft of: de Boer, Bart (2005) Infant directed sgeand the evolution of language, in: M. Tallerman
(ed.)Evolutionary Prerequisites for Languag@xford: Oxford University Press. pp. 100-121

ID speech Compensation Both

8 8 8

7.5 A 7.5 75 4
7 7 7
6.5 - 6.5 6.5 q
67 6 1 64
5.5 - 55 - 551
5 — T T 5 L B L 5 — T T T T T T T
1 51 101 151 201 251 1 51 101 151 201 251 1 51 101 151 201
Generation Generation Generation

Avg. vowels per agent
Avg. vowels per agent

Avg. vowels per agent

Figure 5. Average number of vowels per agent for seven-vowel system for all conditions (bold
lines). Also shown arethe 90% confidenceintervals (thin lines).
vowel systems change over the generations, thegehamumber of vowel categories
is the most important factor estimating how wekmeig could understand each other.
As there was no change over time in the numbepwiels in populations that started
with five-vowel systems, these are not plotted dirae. All conditions performed
equally well in this case.

For seven-vowel systems, things are different. viag the number of vowels
changed over time for populations that started wighfirst seven-vowel system is
shown in figure 5 for all three conditions. It da@ observed that there is no
statistically significant difference in long-terrelavior between the compensation
condition and the ID-speech condition. In the I2e&gh condition, vowel systems
seem to collapse slightly more slowly than in tbenpensation condition, but this
changes dramatically when the reduction of artitaais increased from 2% to 5%.
With 5% contraction, the vowel system collapse$initn few generations. However,
if both ID-speech and compensation are combinedgel/eystems are preserved
significantly better, and the system also turnstodtte more robust to higher
reduction rates (of course, correspondingly lasggransion rates are needed). Similar
results were found for the two other seven-vowstays. It can also be observed
that the seven-vowel systems collapse towards@weVlsystems within
approximately fifty generations in the conditionsaxe only ID-speech or only
simple compensation is used. This is unrealisyidakt. Seven-vowel systems of the
type modeled occur frequently in the world’s langesand tend to be stable over
time.

0.5 Conclusions and Discussion

Two conclusions can be drawn from the experimergsgnted here. First, infant-
directed speech is more learnable than adult-@idespeech, as far as the
identification of vowel qualities is concerned. 8ed, infant-directed speech alone is
not sufficient to guarantee stability of vowel gyst over a large number of
generations, but neither is simple compensatiompatgntly both are needed to
prevent collapse of larger vowel systems over time.

That infant-directed speech is more learnable #uit-directed speech
comes as no great surprise. The properties ofthtfiaacted speech (slower tempo,
more exaggerated intonation, better articulatiath @ecurrence in face-to-face
interactions) as well as its near-universal andraatic occurrence, would make it
better input for extracting vowel categories thapid, casual and reduced adult-
directed speech. However, this increased leartybiis now been demonstrated
directly with a computer model.

The preliminary results concerning the role of nifdirected speech in
transfer of vowel systems from one generation ¢oriéaxt are perhaps harder to
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interpret. The model seems to indicate that bdthrra of automatic compensation for
reduction and infant-directed speech are needednsfer larger vowel systems
successfully. Special infant-directed speech doeseem to be required for smaller
five-vowel systems. This seems to indicate thantfirected speech is not necessary
for smaller vowel systems, but becomes increasimghortant for larger vowel
systems. This finding seems to be supported bymapdata. From the data
presented by Kuhét al. (1997) one can calculate the ratio between thiaces in

first formant/second formant space used for aritog vowels in adult-directed
speech and infant-directed speech. This ratio as&e with the number of vowels.
Thus for Russian (6 vowels) one finds a ratio @B1for English with a larger vowel
system one finds a ratio of 1.85 and for Swedigh wie largest vowel system, one
finds a ratio of 1.96. Mandarin Chinese with afiowel system seems to fit the
pattern with a ratio of 1.4 (Ligpersonal communicatigriiu, et al. 2000). This
indicates that infant-directed speech is more mtesdanguages with more vowels.

What are the implications of this for our undersiiag of the evolution of
language? Apparently learning language is madeehgiparents’ behavior towards
infants. This means that the evolution of languagest partly be considered as co-
evolution between infant learning behavior on the band and parental behavior on
the other. A complete theory of language must foeeeaccommodate both the
capacity for acquiring language and the abilitgitaplify speech and language when
addressing infants.

This does not necessarily mean that such a thddaypguage evolution is
more complex than a theory that doesn’t take cleetehild interactions into
account. On the contrary, learning mechanisms eagirbpler if the linguistic
material to be learned is presented in a way tllatlaarning. It is difficult to imagine
how adult directed (rapid, casual, reduced andestvtependent) language can be
learned directly by a child. However, when it is@sed that the complexity of
language the infant is exposed to is graduallyeiased, one can imagine that a child
can bootstrap its way into a language that is nmote complex than one that needs
to be learned at once. In this sense a specialtidisgected speech register might be a
prerequisite for more complex language to emerge.

Finally, it can be imagined that the presence tantidirected speech can
generate an environment in which biological adamiatto more complex linguistic
structures can evolve. Infant-directed speech helgabilize the cultural
transmission of more complex linguistic structuf@sch as larger vowel systems)
over many generations. Although in principle suarencomplex structures might be
learnable, they might not remain stable over gamerswithout infant-directed
speech. Therefore they cannot exert evolutionaggqure on he members of the
population, and adaptations that are favorabléefmming those structures are not
expected to occur. However, with infant-directedesgh and bootstrapping of more
complex linguistic structures, such structures mighstable over longer periods of
time. This might cause extra evolutionary pressuréanguage users to increase the
complexity of their (biological) adaptations fonguage.

The models used here are quite crude. Many impoapects of learning
speech, such as how the number of vowel categerastermined and how sounds
are imitated have not been modeled properly. Plyssirk on mirror neurons in
relation to speeche(g. Studdert-Kennedy, 2002) can be useful here. Aliss,
assumed that speakers and learners already knowohdovmany things: analyse
discrete sounds, take turns, interact etc. Inubisme, some of these issues are
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addressed. Notably, Oudeyer and Studdert-Kennediesas the question of how
speech came to consist of discrete units.

Also, | have only focused on the role of infanteditredspeechi.e. the
phonetic and phonological aspects of language ofgh it is has been suggested that
the evolution of speech can be studied independehtinguage (Fitch 2000), it is
clear that infant-directed language contains manyagtic and semantic
modifications with respect to adult-directed spedclts very likely that these, too
have an influence on learnability, and this shdxddnvestigated. However, the state-
of-the-art of language modeling is not yet up tonddhis with computer models.

Although much work on the role of infant-directgeésch in the acquisition
and evolution of language remains to be done pdyer has shown that infant-
directed speech can play an important role. Thephaas also shown that a
combination of real language data and computer tmadean provide otherwise
unobtainable insights on learnability and langueiggnge.
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